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课程简介

Introduction

n 课程考核(32学时)
Ø期末考试： 

l考试构成： 70.0%, 百分制;

                                 课程过程中和课后习题(期末考试)

l放假时间： 2021年1月16日-2021年2月28日

l结课时间： 2020年1月1日(周五，最后一课)

l考试时间：计划2020年1月13日(101人)

具体时间待定，看学校安排！



07      PART SEVEN 最优性条件
Optimality Condition

最优性条件



Introduction

n 基本概念

最优化问题可归结成如下数学形式:
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最优性条件



课程简介

Introduction

n 基本概念

Ø 对于极大化问题，可类似定义全局极大点和局部极大点;

Ø 全局极小点也是局部极小点;

Ø 局部极小点不一定是全局极小点；

Ø 某些条件下(如凸规划)，局部极小点也是全局极小点



Introduction

问题导入

n 求函数的极小值
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Introduction

迭代算法

n 梯度下降 (Gradient Descent)
Ø 梯度下降类似盲人下山

         



Introduction

迭代算法-学习准则

n 学习准则 (Learning Rule)



Introduction

梯度下降法

n 梯度下降法(Gradient Descent)

搜索步长α中也叫作学习率(Learning Rate)



Introduction

学习率调整

n 学习率(Learning Rate)
Ø 周期性学习率调整



Introduction

非凸优化问题

Ø 平坦最小值问题

   鞍点(Saddle Point)、驻点(Stationary Point)

1.梯度值为0，在平坦最小值的邻域内，所有点对应的训练损失都比较接近

2.大部分的局部最小解是等价的

3.局部最小解对应的训练损失都可能非常接近于全局最小解对应的训练损失

  

n 非凸优化问题(Non-convex Optimal Problems)



Introduction

优化算法

n 优化算法(Optimization Methods)
Ø 可视化

Ø 上面两种情况都可以看出，有的算法几乎很快就找到了正

确的方向并前进，收敛速度也相当快，而其它方法要么很

慢，要么走了很多弯路才找到

Ø 那么是么时候才能有最优解(局部)？如何找出呢？
 
 

   鞍点 优化曲面

鞍点.gif
优化曲面.gif


最优性条件

LP

Ø 无约束问题的极值条件

Ø 约束极值问题的最优性条件

Ø 对偶及鞍点*

n 主要内容(非常重要)
本章研究非线性规划的最优解所满足的必要条件和充分条件，为各种算法(如SVM、
牛顿迭代、割线法)的推导和分析提供必不可少的理论基础。



最优性条件

LP

n 无约束问题的极值条件

考虑非线性规划问题

无约束极值问题

min       ( ),    nf x x E

 ( ) nf x E其中 是定义在 上的实值函数

——称为无约束极值问题（UNLP）
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最优性条件

LP

n 无约束问题的极值条件
定理 7.1.1(非极小点的充分条件) 
设f(x)在点x*处可微,若存在方向d(0)Rn,使得
f(x*)'d<0, 则存在>0,使得对任意(0,),有
f(x*+d)<f(x*).
x* 一定不是极小点
此时,我们称d为f(x)在x*的一个下降方向.

证明. 由 f(x) 在 x* 可微, 则

    f(x*+d)=f(x*)+f(x*)d+||d||(x*;d), 

其中 (x*;d) 0(当  0). 



最优性条件

LP

n 无约束问题的极值条件

移项且两边同除以( 0),得

(f(x*+d)－f(x*))/  ＝ f(x*)d+||d||(x*;d)

由于 f(x*)d<0 且 (x*;d) 0 (当  0). 

从而存在  > 0 使得对任意(0, ),

         f(x*)d+||d||(x*;d)<0 .

定理立明.



最优性条件

LP

n 无约束问题的极值条件
定理 7.1.2-3(极小点的必要条件)设x*处是问题(UNLP)
的局部极小点.

(1)当 f(x) 在 x*可微时,则梯度 f(x*)=0.
(2)当 f(x) 在 x*二次可微时,则 f(x*)=0 且 Hessian 矩
阵 H(x*) 是半正定的

证明(1). 若f(x*)0, 作 d=－f(x*).  
则有 f(x*)d<0

由定理 7.1.1 , 存在  > 0 使得 f(x*+d)<f(x*)， (0, ), 此与 
x* 为局部极小相矛盾，故 f(x*)=0.
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Introduction

n 1.5 函数的可微性与展开
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n 1.5 函数的可微性与展开
0 0

0 0

( ; ) .
( ; ) ( )              T

Df x p f x p f
Df x p f x p 

我们也用 表示 在点 关于方向 的方向导数当 的一阶

偏导连续时有    

2 2

2
1 1

2 2
2

2
2 1 2

2 2

2
1

( ) ( )

( ) ( )
( ) ( )( )

( ) ( )

n

n
i j j i

n n

f x f x
x x x

f x f x
f x f xf x x x x x
x x x x

f x f x
x x x

  
   
         

             
 
  
   






 



  其中

当f(x)在x点存在二阶偏导时,函数f在点x的Hesse矩阵定义为
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n 1.5 函数的可微性与展开
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n 1.5 函数的可微性与展开
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n 1.5 函数的可微性与展开
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设向量值函数 连续可微 则对 u,v, 有

进而，若Jacobi矩阵映射 在 内是 连续的，记 为
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最优性条件

LP

n 无约束问题的极值条件
证明(2): 给定任意向量 d. 由 f(x) 在 x*的二次可微性，有

f(x*+d)=f(x*) +f(x*)d+d’H(x*)d/2+||d|| (x*;d)    (I), 

其中 (x*;d) 0(  0). 由（1）的证明有 f(x*)=0. 

移项整理并两端除以  , 得 

       (f(x*+d)-f(x*)) /=d’H(x*)d/2+||d|| (x*;d)    (II).

因 x* 局部极小, 对充分小 有f(x*+d)f(x*) 

d’H(x*)d/2+||d|| (x*;d)0    2
由(II), 显见

对充分小的成立, 对 0取极限, 则有d’H(x*)d 0, 
从而, H(x*) 半正定

    2

    2



最优性条件

LP

n 无约束问题的极值条件（二阶充分条件）
定义1 若f(x)在点x*处可微,且f(x*)=0,则称x*为f(x)的一个
驻点或平稳点.
既不是极大点也不是极小点的驻点称为鞍点.

定理 7.1.4 (二阶充分条件). 假设 f(x) 在 x*点二次可微,f(x*)=0 
且 Hessian 矩阵 H(x*) 是正定的,则 x* 是(UNLP)的一个(严格)
局部极小点



最优性条件

LP

n 无约束问题的极值条件

证明. 因 f  在 x* 二次可微,故对任意 x, 有 

f(x)=f(x*)+f(x*)(x-x*)+(x-x*)H(x*)(x-x*)/2+||x-x*|| (x*; x-x*), 

这里 (x*; x-x*) 0,当 xx*.
     假设命题不真，x* 不是局部极小, 则存在序列 {xk }收敛到 x* , 
并使得 f(xk)<f(x*) 对每一 k成立。定义序列

                                  (xk-x*)/|| xk-x*||=dk.
则上述方程蕴含 d’kH(x*)dk/2+(x*; xk- x*)0 （ k）
但对每一 k, ||dk||=1 ，从而{dkj } d, 当 kj , 这里 ||d||=1. 
由f(x*)=0, 我们有 dH(x*)d0, 此与其正定性矛盾.

2



最优性条件

LP

n 无约束问题的极值条件(充要条件)

证明. （必要性）若 x* 全局最优, 由Th7.1.2， f(x*)=0.

（充分性）设 f(x*)=0, 则 f(x*)(x-x*)=0 ， x* En

由 f(x)可微凸，有（Th1.4.14） 

    f (x)f(x*)+ f(x*)(x-x*) = f(x*) 

定理得证.

定理 7.1.5 (充要条件). 假设 f(x):RnR 是可微的凸函数,
则x* 是(UNLP)的全局最小点当且仅当f(x*)=0.
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LP

n 无约束问题的极值条件

2 2 2 2
1 1 2 1

7.1.1
min ( ) ( 1) 2f x x x x x    

例   利用极值条件解下列问题：
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解得驻点
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正定，故 是局部极小点。
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LP

n 无约束问题的极值条件

3 3 2
1 2 2 1

7.1.2
1 1min ( )
3 3

f x x x x x   

例     利用极值条件解下列问题： 
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LP

n 无约束问题的极值条件
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由于 ） ） ）不定或负定，仅 )正定，

故 是局部极小点。
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LP

n 约束极值问题的最优性条件
约束极值问题
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n 约束极值问题的最优性条件
可行方向和下降方向

定义 7. 2.1. 设 f(x) 定义在Rn上的实值函数. x* Rn, d0,  若
存在  > 0 使得 f(x*+d)<f(x*)( (0, )),则 d 称为f(x)在x*
的下降方向(Decedent Direction)

设 f(x) 在 x*可微. 若存在向量 d 满足 f(x*)d<0, 则 由Th7.1.1, 
d 是 f(x) 在 x*的下降方向。记所有这样的向量集合为

cl , 0 [0, ] 7 2 2 . , , ,
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S D
{ 0, , 0, (0, )
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, }
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nx S d R x d S
d x x

x
D d d x clS x d S

定义 设 若 使得

则称 为集合 在点 的一个 集合 在 点的所有S

使得

可

行方向集合称为 在 点的 ,记为 (或 ( , )

对 有

可行方向

可 方 锥 )行 向

. .  



最优性条件

LP

n 约束极值问题的最优性条件
由可行方向定义和下降方向知，从点 x*沿可行方向 dD(x*) 
作一个很小的移动还是可行点. 

进一步，由定理 7.1.1, 若 f(x*)d<0 ，则d 是f在 x*的下降方向。

下面定理将说明若 x* 是局部最优且 f(x*)d<0, 则 dD(x*).即
不是可行方向。

定理 7.2.1. (必要条件) 考虑极小化问题：

                                   min f(x) ，s. t xS,

其中 S 是 Rn 中非空集合。设 f(x) 在 x*可微，若 x* 是局部极

小点，则 F0(x*)D=,其中 F0(x*)={d |f(x*)d<0} ，D是S在
x*的可行方向锥。
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n 约束极值问题的最优性条件

证明：反证法，设存在向量 dF0(x*)D.由Th7.1.1知

（1）：存在 1>0,  f(x*+d)<f(x*) ， (0, 1) ，

  又由D的定义，

（2）：存在 2>0， x*+dS ，  (0, 2)

此与局部极小矛盾。



最优性条件

LP

n 不等式约束的一阶最优性条件

为把最优性的几何条件用代数来表示，引入起作用约束的

概念。问题的约束条件在点x*S处有两种情形

 

     min     ( )     
,     ( ) 0,      1, 2,..,

S  ( ) 0, 1, 2,..,
i

i

f x
s t g x i m

x g x i m

 

 

考察非线性规划

可行域 ＝

1，I= {i| gi(x*)=0}——在x*处起作用约束

2，gi(x*)>0. iI——在x*处不起作用约束

      G0(x*)={d |gi(x*)d>0 , iI }.
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n 不等式约束的一阶最优性条件
定理 7.2.2. (必要条件) 考虑极小化问题

                                  min  f(x) 

                            s.t gi(x)0， i=1,…, m，xS, 

其中S是Rn中的非空开集。

设 x* 为可行点, I= {i|gi(x*)=0}. 进一步假设，f(x)和 gi(x) (iI) 
在 x* 可微，gi (iI)在 x*连续. 

若 x* 是局部最优解，则 F0(x*)G0(x*)=,                  

其中F0(x*)={d |f(x*)d<0 }， 

    G0(x*)={d |gi(x*)d>0，iI }.
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n 不等式约束的一阶最优性条件

证明概要. 

设 dG0(x*).因 S 为开集，则存在 1>0 使得对   (0, 1)， 
x* +d S。 

另外存在 2>0使得对  (0, 2) ，iI，有 gi(x*+d)>0，

最后存在 3>0 使得对任意  (0, 3)，iI，有gi(x*+d)>gi(x*), 
从而 dD, D 是 x*处的可行方向锥。 

于是G(x*)D. 由定理 7.2.1, 立明。
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n 不等式约束的一阶最优性条件

g1(x)=-x   - y   + 5,

g2(x)=-x - y + 3,

g3(x)=x,

g4(x)=y；  I={2}

f(x)＝[2(x －3),2(y －2)]

  2   2

Min  (x-3)  + (y-2)

  s.t.  x   + y   5

           x + y   3

 x,  y   0.

2 

2

2

2

f(x*)

g2(x*)

(9/5, 6/5)

F(x*)G(x*). 
g2(x)

g1(x)

x*
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n 不等式约束的一阶最优性条件

Min  (x-3)  + (y-2)

  s.t.  x   + y   5

           x + y   3

 x,  y   0.

2 

2

2

2

x*=(2, 1)

g1(x*)=(-4,   -2),

g2(x*)=(-1,   -1),

f(x*)＝(-2, -2)

f(x*)

g1(x*)

x* 是最优解

g2(x*)

(2,1)
x*
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n 不等式约束的一阶最优性条件
定理 7.2.3. (Fritz John Condition, 1948)考虑极小化问题

               min  f(x)， s.t gi(x)0， i=1,…, m ，xS, 
其中 S 是 En中非空开集. 设 x* 为可行点, I= {i| gi(x*)=0}. 进一

步假设 f(x) 和 gi (x)(iI)在 x* 可微, gi (iI) 在 x*连续. 若 x* 是
局部最优解.则存在一组非负数 u0 , ui (iI)使得

         u0f(x*) - uigi(x*)=0, u0, ui0 for iI and (u0, uI)0.
iI

进一步, 若 gi(x) (iI) 在 x*也可微，则 

            u0f(x*) uigi(x*)=0, 

uigi(x*)=0,  u0, ui (所有 i ) ，且 (u0, u)0.
i=1

i=m
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n 不等式约束的一阶最优性条件

证明. 由Th7.2.2, 不存在向量 d 同时满足 f(x*)d<0 和 
gi(x*)d<0 ，( iI). 设 A 是其行由 f(x*) 和 gi(x*)(iI)组
成的矩阵. 则 Ad<0 无解. 

由Godan定理, 必存在非零向量 p0 使得 Ap=0. 记 p 的分量为 u0 
和 ui (iI), 则定理第一部分得证。 第二部分让 ui =0 (iI)立明.

在 Fritz John 条件中,  u0, ui 称为 Lagrangian 乘子. 

而条件 uigi(x*)=0 称为互补松弛条件(Complementary Slackness 
Condition).
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n 不等式约束的一阶最优性条件

2 2
1 2

2 2
1 1 2

2 1 2

3 2

1 x*=(3,1)
min ( ) ( 7) ( 3)
. .    ( ) 10 0

       ( ) 4 0
      ( ) 0

FJ

f x x x
s t g x x x

g x x x
g x x



   

   
   
 

例 已知 是下列问题的最优解：

 

验证满足 条件.

x

( )f x 2 ( )g x

1 ( )g x
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n 不等式约束的一阶最优性条件

1 2

0 1 2

(3,1)
I={1,2}

8 6 1
( ) , ( ) , ( )

4 2 1

8 6 1 0
4 2 1 0

0 w=(1,1,2)
FJ

x
x

f x g x g x

w w w

x



       
                 

         
                  

在点 处，前两个约束是起作用约束，即

，计算在 处目标函数及起作用约束函数的

梯度，有

设

此方程有分量不全为 的非负解，如

于是在 处满足 条件。
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n 不等式约束的一阶最优性条件

2
2

1 1 2

2 1

2
min ( ) -

. .    ( ) 2 (2 ) 0
       ( ) 0
      (0 2) FJ

f x x

s t g x x x
g x x

x
x



    

 



例 给定非线性规划问题

 

验证 ， 处 条件满足。

在点 处，两约束都起作用。目标函数及

约束函数的梯度为：
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n 不等式约束的一阶最优性条件

1 2

0 1 2

0 2 1
( ) , ( ) , ( )

1 0 0

0 2 1 0
1 0 0 0

w= 0,k,2k k
x FJ

f x g x g x

w w w

     
               

       
                

设

此方程有解 （ ）， 可取任何正数

于是在 处满足 条件。



最优性条件

LP

n 不等式约束的一阶最优性条件

若 Lagrangian 乘子 u0 =0, 则 Fritz John 条件 不包含f(x)的任何

信息，它仅仅是表明可以把起作用约束的梯度作一个非负的非

平凡的线性组合而成为零向量。从而对我们的最优解没有多少

实用价值。

为保证u0>0,可以对约束强加某种限制，这种限制条件叫做约

束规格或约束品性( Constraint Qualifications).已有很多的约束

规格，特别的, Karush [1939, MS Thesis, Dept of Math, Univ of 
Chicago] , Kuhn 和 Tucker [1951] 独立给出的最优性必要条件

恰是 Fritz John 条件加上 u0>0。
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n 不等式约束的一阶最优性条件
定理 7.2.4. (Karush-Kuhn-Tucker 必要条件)考虑极小化问题

               min  f(x) s.t gi(x)0， i=1,…, m ，xS, 
其中 S 是 En中非空开集. 设 x* 为可行点, I= {i| gi(x*)=0}. 
进一步假设 f(x) 和 gi(x)(iI)在 x* 可微, gi (iI) 在 x*连续. gi
对iI 线性独立.
若 x* 是局部最优解,则存在一组非负数ui(iI)使得     
        f(x*) uigi(x*)=0, ui 0 (iI).iI

若还有 gi (iI)在 x*可微, 则

     f(x*) uigi(x*)=0, 

     uigi(x*)=0, ui0 ， i=1,…, m.
i=1

i=m
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n 不等式约束的一阶最优性条件
Karush-Kuhn-Tucker 
条件可写成向量形式
∇f(x*)-u∇g(x*)=0, 
ug(x*)=0, 
u≥0.

这表明 ∇f(x*) 属于起
作用约束的这些约束
的梯度所形成的锥中。



最优性条件

LP

n 不等式约束的一阶最优性条件

2 2
1 2

2
1 2

1 2

(1) (2)

3
min ( - 2)

. .     - 0
        - 0

0 1
K-T

0 1

x x

s t x x
x x

x x





 

   
    
   

例 给定非线性规划

 

验证下列两点

和 是否为 点
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n 不等式约束的一阶最优性条件
2 2

1 2
2

1 1 2

1 1 2

1
1 2

2 2

(1)
1 2

1

( ) ( - 2)

         ( ) = -
         ( ) -

2( - 2) 1 1
( ) ( ) ( )

2 2 1

.  ( ) 0 ( ) 0

4
( )

0

f x x x

g x x x
g x x x

x
f x g x g x

x x

x g x g x

f x

 

 

     
       

    
 


 （）

记   

目标函数和约束函数的梯度是

－
＝ ， ＝ ， ＝

－

先验证 在这一点， ， 都是起作用约束

目标函数和约束函数的梯度分别是

－
＝ 1 1

1 2

1 1
( ) ( )

0 1
g x g x

    
      

     
（） （） －

， ＝ ， ＝
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n 不等式约束的一阶最优性条件

1 2

1 2

1

4 1 1 0
0 0 1 0

4 0
0, KKT

w w

w w
w

       
       

       



－ －
设   － －

解此方程组，得 ＝－ ， ＝ 。

由于 故不是 点。

(2)
1 2 ( ) 0 ( ) 0x g x g x 再验证 ,在这一点， ， 都是起作用约束

目标函数和约束函数的梯度分别是:

1 2

1 1
( ) ( ) ( )

2 2 1
f x g x g x

     
            

（2） （2） （2）－2 －
＝ ， ＝ ， ＝
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n 不等式约束的一阶最优性条件

1 2

1 2

1 1 0
2 2 1 0

0 2
KKT

w w

w w

       
       

       

－2 －
设  － －

－

解此方程组，得 ＝ ， ＝ 。

故它是 点。
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n 不等式约束的一阶最优性条件
定理 7.2.5. (Karush-Kuhn-Tucker 充分条件)考虑极小化问题

                       min  f(x) s. t gi(x)0， i=1,…, m ，xS, 
其中S是En中非空开集. 设 x* 为可行点, I= {i| gi(x*)=0}. 

设f(x)和诸gi是凸的，进一步假设 f(x) 和 gi(x)(iI)在 x* 可微, 
gi (iI) 在x*连续. 若 K-K-T条件在 x*成立，则x*是全局最优解.

证明略
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n 小结

Ø 无约束问题的极值条件

Ø 约束极值问题的最优性条件

Ø 对偶及鞍点*


