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课程简介

Introduction

n 课程考核(32学时)
Ø期末考试： 

l考试构成： 70.0%, 百分制;

                                 课程过程中和课后习题(期末考试)

l放假时间： 2021年1月16日-2021年2月28日

l结课时间： 2020年1月1日(周五，最后一课)

l考试时间：计划2020年1月13日(101人)

具体时间待定，看学校安排！



07      PART SEVEN 最优性条件
Optimality Condition

最优性条件



Introduction

n 基本概念

最优化问题可归结成如下数学形式:

min  ( )             ---
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目标函数

最优性条件



Introduction

问题导入

n 求函数的极小值
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最优性条件

LP

n 无约束问题的极值条件
定理 7.1.2-3(极小点的必要条件)设x*处是问题(UNLP)
的局部极小点.

(1)当 f(x) 在 x*可微时,则梯度 f(x*)=0.
(2)当 f(x) 在 x*二次可微时,则 f(x*)=0 且 Hessian 矩
阵 H(x*) 是半正定的

定理 7.1.4 (二阶充分条件). 假设 f(x) 在 x*点二次可微,f(x*)=0 
且 Hessian 矩阵 H(x*) 是正定的,则 x* 是(UNLP)的一个(严格)
局部极小点

定理 7.1.5 (充要条件). 假设 f(x):RnR 是可微的凸函数,
则x* 是(UNLP)的全局最小点当且仅当f(x*)=0.



最优性条件

LP

n 无约束问题的极值条件

2 2 2 2
1 1 2 1

7.1.1
min ( ) ( 1) 2f x x x x x    

例   利用极值条件解下列问题：

       

3 3 2
1 2 2 1

7.1.2
1 1min ( )
3 3

f x x x x x   

例  利用极值条件解下列问题： 

       



最优性条件

LP

n 不等式约束的一阶最优性条件

为把最优性的几何条件用代数来表示，引入起作用约束的

概念。问题的约束条件在点x*S处有两种情形

 

     min     ( )     
,     ( ) 0,      1, 2,..,

S  ( ) 0, 1, 2,..,
i

i

f x
s t g x i m

x g x i m

 

 

考察非线性规划

可行域 ＝

1，I= {i| gi(x*)=0}——在x*处起作用约束

2，gi(x*)>0. iI——在x*处不起作用约束

      G0(x*)={d |gi(x*)d>0 , iI }.



最优性条件

LP

n 不等式约束的一阶最优性条件
定理 7.2.2. (必要条件) 考虑极小化问题

                                  min  f(x) 

                            s.t gi(x)0， i=1,…, m，xS, 

其中S是Rn中的非空开集。

设 x* 为可行点, I= {i|gi(x*)=0}. 进一步假设，f(x)和 gi(x) (iI) 
在 x* 可微，gi (iI)在 x*连续. 

若 x* 是局部最优解，则 F0(x*)G0(x*)=,                  

其中F0(x*)={d |f(x*)d<0 }， 

    G0(x*)={d |gi(x*)d>0，iI }.



最优性条件

LP

n 不等式约束的一阶最优性条件
定理 7.2.3. (Fritz John Condition, 1948)考虑极小化问题

               min  f(x)， s.t gi(x)0， i=1,…, m ，xS, 
其中 S 是 En中非空开集. 设 x* 为可行点, I= {i| gi(x*)=0}. 进一

步假设 f(x) 和 gi (x)(iI)在 x* 可微, gi (iI) 在 x*连续. 若 x* 是
局部最优解,则存在一组非负数 u0 , ui (iI)使得

         u0f(x*) - uigi(x*)=0, u0, ui0 for iI and (u0, uI)0.
iI

进一步, 若 gi(x) (iI) 在 x*也可微，则 

            u0f(x*) uigi(x*)=0, 

uigi(x*)=0,  u0, ui (所有 i ) ，且 (u0, u)0.
i=1

i=m



最优性条件

LP

n 不等式约束的一阶最优性条件

2 2
1 2

2 2
1 1 2

2 1 2

3 2

1 x*=(3,1)
min ( ) ( 7) ( 3)
. .    ( ) 10 0

       ( ) 4 0
      ( ) 0

FJ

f x x x
s t g x x x

g x x x
g x x



   

   
   
 

例 已知 是下列问题的最优解：

 

验证满足 条件.

x

( )f x 2 ( )g x

1 ( )g x



最优性条件

LP

n 不等式约束的一阶最优性条件

2
2

1 1 2

2 1

2  
min ( ) -

. .    ( ) 2 (2 ) 0
       ( ) 0
      (0 2) FJ

f x x

s t g x x x
g x x

x



    

 



例 给定非线性规划问题

 

验证 ， 处 条件满足。



最优性条件

LP

n 不等式约束的一阶最优性条件

若 Lagrangian 乘子 u0 =0, 则 Fritz John 条件 不包含f(x)的任何

信息，它仅仅是表明可以把起作用约束的梯度作一个非负的非

平凡的线性组合而成为零向量。从而对我们的最优解没有多少

实用价值。

为保证u0>0,可以对约束强加某种限制，这种限制条件叫做约

束规格或约束品性( Constraint Qualifications).已有很多的约束

规格，特别的, Karush [1939, MS Thesis, Dept of Math, Univ of 
Chicago] , Kuhn 和 Tucker [1951] 独立给出的最优性必要条件

恰是 Fritz John 条件加上 u0>0。



最优性条件

LP

n 不等式约束的一阶最优性条件
定理 7.2.4. (Karush-Kuhn-Tucker 必要条件)考虑极小化问题

               min  f(x) s.t gi(x)0， i=1,…, m ，xS, 
其中 S 是 En中非空开集. 设 x* 为可行点, I= {i| gi(x*)=0}. 
进一步假设 f(x) 和 gi(x)(iI)在 x* 可微, gi (iI) 在 x*连续. 
gi对iI 线性独立.
若 x* 是局部最优解,则存在一组非负数ui(iI)使得     
        f(x*) uigi(x*)=0, ui 0 (iI).iI

若还有 gi (iI)在 x*可微, 则

     f(x*) uigi(x*)=0, 

     uigi(x*)=0, ui0 ， i=1,…, m.
i=1

i=m



最优性条件

LP

n 不等式约束的一阶最优性条件
Karush-Kuhn-Tucker 
条件可写成向量形式
∇f(x*)-u∇g(x*)=0, 
ug(x*)=0, 
u≥0.

这表明 ∇f(x*) 属于起
作用约束的这些约束
的梯度所形成的锥中。



最优性条件

LP

n 不等式约束的一阶最优性条件

2 2
1 2

2
1 2

1 2

(1) (2)

3
min ( - 2)

. .     - 0
        - 0

0 1
K-T

0 1

x x

s t x x
x x

x x





 

   
    
   

例 给定非线性规划

 

验证下列两点

和 是否为 点



最优性条件

LP

n 不等式约束的一阶最优性条件
定理 7.2.5. (Karush-Kuhn-Tucker 充分条件)考虑极小化问题

                       min  f(x) s. t gi(x)0， i=1,…, m ，xS, 
其中S是En中非空开集. 设 x* 为可行点, I= {i| gi(x*)=0}. 
设f(x)和gi是凹的，进一步假设 f(x) 和 gi(x)(iI)在 x* 可微, 
gi (iI) 在x*连续. 若 K-K-T条件在 x*成立，则x*是全局最优解.

证明略



最优性条件

LP

n 一般约束问题的一阶最优性条件

1 1

2 2

( ) ( )
( ) ( )

( ) , ( )

( ) ( )m l

g x h x
g x h x

g x h x

g x h x

   
   
    
   
   
   

... ...

j

COP)      
                       min     ( )     
            ,     ( ) 0,      1, 2,..,                     (7.2.1)
                    ( ) 0,       1, 2,...,

n

i

f x x E
s t g x i m

h x j l


 



考虑约束优化(

＝
记

COP) 
  min     ( )     
  ,     ( ) 0,          (7.2.33)
           ( ) 0,      

nf x x E
s t g x

h x




( 矩阵形式

＝



最优性条件

LP

n 一般约束问题的一阶最优性条件

0 1

0 1

{ ( ) | } { | ( ) 0}
, [ , ] ( ( )) 0.

7.2.4 x x t t t t S x h x
t t t h x t

    

 

 点集 称为曲面

上的一条曲线 如果对所有 均有

定义

 
, { ( ), ( ) | 1, 2,..., , 1, 2,..., }

( ) ( )

7.2.3

i j

x x
I g x h x i m j l

x g x h x

   

设 为可行点，不等式约束中在 点起作用约束下

标集记作 若向量组

线性无关，则

定义

称 为约束 和 的正则点。

( ), , ( )

. ( ) ( )
( ) . S

, S , ( ).

dx tt x t dt
x t x t

x t x
x T x

 



显然曲线上点是参数的函数 若导数 存在

则称曲线是可微的曲线 的一阶导数 是曲线在点

处的切向量曲面 上在点 处所有可微曲线的切向量

组成的集合 称为曲面 在点 的切平面 记做



最优性条件

LP

n 一般约束问题的一阶最优性条件

1 2

1

2

( ) ( ),..., ( )
H

( ) 0
( ) 0

( ) 0

( )

l

l

h x h x h x

h x
h x

h x

x T x

  








可证明，当 ， 线性无关时，

等于等式约束

＝

＝
                     

...

＝

所定义的超曲面在 处的切平面 。

 H ( ) 0,       1, 2,...,jd h x d j l 

定义集合

＝ ＝



最优性条件

LP

n 一般约束问题的一阶最优性条件

证明略

1 2

7.2.6 { | ( ) 0} (
( ) ( ),..., ( ) )

( ) { | ( ) 0}.
l

T

Th x S x h x
h x h x h x x

T x H d h x d

 

  

  

设 是曲面 上一个正则点 即

， 线性无关 ,则在点 切平面

等于子空间



最优性条件

LP

n 一般约束问题的一阶最优性条件

0

0

0

{ | ( ) 0}

{ | ( *) 0 ( )}

{ | ( *) 0 ( 1,2,..., )}

  

   

   

T

T
i

T
j

F d d f x

G d d g x i I

H d d h x j l

其中

      

      

      

1 2

0 0 0

7.2.7 (7.2.1) , ,
{ | ( ) 0}, ( ) , ( )

, ( 1, 2, ..., ) ,

( ) ( ), ..., ( )
, ,  

   



  

  

i i i

j

l

Th x
I i g x f g i I x g i I

x h j l x

h x h x h x x
x F G H

设在约束极值问题 中 为可行点

和 在点 可微

在点 连续 在点 连续可微 且

， 线性无关.若 是局部

最优解 则在点 处 有



最优性条件

LP

n 一般约束问题的一阶最优性条件

0

0

7.2.8(Fritz John ) (7.2.1) ,  
, { | ( ) 0}, ( ) , ( )

, ( 1,2,..

(

., )

, 0( ), ( 1,2,.

)

.., ),

i i i

j

i

j

i

Th x
I i g x f g i I x g i I

x h j l x x

w w i I v

w f

R j l

x w

   



 



  

 

下面给出一阶必要条件的代数表示.我们有如下定理.

 条件 设在约束极值问题 中 为

可行点 和 在点 可微 在

点 连续 在点 连续可微.若 是局部最优解,

则 不全为零的数 使得

    
1

( ) ( )
l

i j j
i I j

g x v h x
 

   =0 



最优性条件

LP

n 一般约束问题的一阶最优性条件

例:
2 2
1 2

2 2
1 2

1

2

1 2

min     

.      5,
             0,
            0,
       2 4.

* (4 / 5,8 / 5)
Fritz John

x x

s t x x
x
x

x x
x



 

 

 

 

验证在 处

条件成立.

1

1

*
 

( *) (8 / 5,16 / 5) ,
( *) (1,2)

( *) ( *) 0
8 15 0

16 2
5

5, 8

 

 

   

           
  

T

T

x

f x
h x
w f x v h x

w v

w v


此处只有一个等式约束.

注意到在 处I= ,因此

与不等式相应的乘子为零.

于是 即

有合适解.如取



最优性条件

LP

n 一般约束问题的一阶最优性条件
例：   

验证可行点(1,0)是否
满足FJ条件。

1
3

2 1
3

2 1

min

(1 ) 0,

(1 ) 0,



  

   

x

x x

x x



最优性条件

LP

n 一般约束问题的一阶最优性条件

1 2

0 1 2

0 1 2

* (1,0) .

( *) ( 1,0) ,
( *) (0,1) , ( *) (0, 1) ,

1 0 0
0 1 1

0, ( ) .
* FJ .

T

T

T T

x

f x
h x h x

FJ w v v

w v v a a
x



  

    

     
           

   

此问题只有一个可行解

在此点处,有

条件  

当 为任意数 成立

故在 满足 条件

1
3

2 1
3

2 1

min

(1 ) 0,

(1 ) 0,

x

x x

x x



  

   



最优性条件

LP

n 一般约束问题的一阶最优性条件

7.2 .9( (Karush-Kuhn-Tucker ) )
( )* , , ( ) *

, ( ) * *

{ ( *), ( *) | , 1, 2,...

0( ), ( 1, 2,..., ),

, }

 



   

  





定理 一阶必要条件 定理 代数特征

设 是问题 7.2.1的局部极小点,函数 在点

处可微, 在点 处连续, 在点 处连续可微.若

             

线性无关，则 使得

  

i j

i

i j

i j

w i I v R j

x S f g i I x
g i I

l

x h x

g x h x i I j l

:

( *) ( *) ( *)
 

              i i j j
i I j E

f x w g x v h x

KKT最优性必要条件（Th2.4）加以推广。这是通过增加约束
规格来实现的.

前面FJ条件中w0不一定为正, 在下面定理中。我们将前面提到的



最优性条件

LP

n 一般约束问题的一阶最优性条件

进一步假设,gi (iI)在 x*, 连续可微,则

     f(x*)- uigi(x*)-vjhj(x*) =0, 
     uigi(x*)=0, ui0(i=1,…, m.)

i=1

i=m

o若采用矩阵和向量记号,则KKT可如下简洁表示

.i jg h g h其中 和 分别是由 和 组成的向量函数

定义Lagrange函数为

(7.2.48)( , , ) ( ) T TL x f x g h      



最优性条件

LP

n 一般约束问题的一阶最优性条件

( ) ( ) ( , ),

( ) ( ) ( , 1, 2,..., ),

( ), ( ) , Jacobi

T
g i

T
h j

g h

g h x
g x J x g i I

h x J x h j l

J x J x g h x

    

    

记向量值函数 和 在 点的梯度为

其中 分别是 在 点的 矩阵.

( *) ( *) ( *)             
( *) 0,      0                         (7.2.49)
( *) 0,   ( *) 0                          

T

f x g x h x
g x
g x h x

     

   
 

则KKT条件可表为



最优性条件

LP

n 一般约束问题的一阶最优性条件
| |* , , KKT (7.2.49),

* (COP) , *
Lagrange . , ( *)

KK
.

T
  

 



定义若 满足 条件

则 称为约束优化问题 的一个 点

互补

和 称为

处的 乘子特别的 =0称 条为 松弛 件

n I l

T

x R R R
x x

g x



最优性条件

LP

n 一般约束问题的一阶最优性条件
, , { } { }

1,2,.... , 0

( , )

n k
k

k k
k k

x S d R d
k x d S d d

d S x S x

SFD x S

  

       

定义:设 若 向量序列 和正实数列

使得对 有 ,且

则称 为 在点 的一个 . 在点 的所序列化可行方向

序列化可

有

序列化可行方向的集合,称为 ,记为行方向锥

* , , *

( *) 0, ( *, ) \{0}
* .



   
i j

T

x S f g h x

d f x d SFD x S
x

定理 充分条件 设 ,函数 在点 处可微,且

   

则 为(COP)的严格局部极小点

 ( )



最优性条件

LP

n 一般约束问题的一阶最优性条件

7.2.10 ( : )

K

, * ,

* KT
COP

*

i j i jf g h x S f g h

x x

， ， ，

定理 充分条件凸规划情形

设 为凸函数 为凹函数 为线性函数。对于 若

在点 处可微,并且 条件(7.2.49)成立，则 为优化问题

（ ）的全局极小点。



最优性条件

LP

n 第五次作业

第243页第七章2.3.4.5.6.8.9

感兴趣的同学学习7.3节--对偶及鞍点问题
(和线性规划的对偶问题类似)

11月23日--------习题课！
(相同时间答疑)



最优性条件

LP

n 小结

Ø 无约束问题的极值条件

Ø 约束极值问题的最优性条件

Ø 对偶及鞍点*


