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09      PART NINE 一维搜索
One-Dimensional Search

一维搜索



n 主要内容

• 一维搜索的基本概念

• 试探法

• 函数逼近法

一维搜索



n 基本概念

问题导入

•最优化问题可归结成如下数学形式:
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Introduction

迭代算法

n 梯度下降 (Gradient Descent)
Ø 梯度下降类似盲人下山

         



Introduction

梯度下降法

n 梯度下降法(Gradient Descent)

搜索步长α中也叫作学习率(Learning Rate)



一维搜索

n 概念 
迭代优化方法的基本结构：
给定初始点x0 
(a) 确定搜索方向dk，即按照一定规则，构造f在xk点处的下降

方向作为搜索方向;
(b) 确定步长因子k，使目标函数值有某种意义下的下降;
(c) 令                 xk+1 = xk +kdk
若xk+1满足某种终止条件则停止迭代，得到近似最优解xk+1，
否则，重复上述步骤。
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  注意到上述迭代算法中当方向确定后 涉及到求一个

步长 使得目标函数值减小 极小化问题 这就是在一

直线上求目标函数的极小点即极小化 这称

为 对变量的 或称一维搜索问题 为线搜索.



一维搜索

n 概念 
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设目标函数为 过点 沿方向 的直线可用点集

来表示:

    

求 在直线 上的极小点就转化为求

的极小点
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设 的极小点为 称 为沿方向 的

于是 在直线 上的极小 为

步长因子

点



一维搜索-->方法

n 代表性方法

函数逼近法/插值法

试探法
一维
搜索

{

• 一维搜索算法的闭性

假设一维搜索是以x为起点,沿方向为d的进行的,
并定义为算法映射M
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n 一维搜索算法的闭性
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 下证 注意到 对每个 , 使

Th9.1.1  设f是定义在Rn的连续函数,d0,则(9.1.4)定
义的算法映射M在(x,d)处是闭的

一维搜索-->方法



一维搜索-->方法
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n 一维搜索算法的闭性



n 0.618法

一维搜索-->试探方法
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设 是定义在闭区间

上的一元实函数 是 在 上

的极小点 且对

有   

   当 时

   当 时

则称 是在闭区间 上的单峰函数.



n 0.618法

一维搜索-->试探方法

    单峰函数具有一些很有用的性质:
如果f是[a,b]上单峰函数,则可通过计算此区间内两
不同点的函数值,就能确定一个包含极小点的子区
间,从而缩小了搜索区间.

单峰函数的一个等价定义：
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上严格递减 在 上严格递增 则称

是函数 的 是 上的单峰区间 单峰函数



n 0.618法

一维搜索-->试探方法
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n 0.618法

一维搜索-->试探方法

证明:仅证(1),反证,如若不然,存在点x*[a, x(1)],使
(2)
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      若 则极小点
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n 0.618法

一维搜索-->试探方法

0.618法的基本思想: 通过取试探点使包含极小点的
区间(不确定区间)不断缩小,当区间长度小到一定
程度时,区间上各点的函数值均接近极小值,此时
该区间内任一点都可以作为极小点的近似值.

1

1

1

1

1

1 ( ) [ , ]
[ , ]. , [ , ], .

( ) ( ), 9.2

(2), ( ) ( ), , ,      (2.2) 
(

.1:
1), ( ) ( ), , ,      (2.1)

k k k k k k k k

k k

k k k k k

k

k

k k k k ka b b

a b k
a b a b

a
T

a b
h

  
   

 
   


 




 

 

 
















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n 0.618法

一维搜索-->试探方法

由(2.3)和(2.4)得到
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每次迭代搜索区间长度的缩短率相同即
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n 0.618法

一维搜索-->试探方法

考虑(2.1)的情形,此时新的搜索区间为
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n 0.618法

一维搜索-->试探方法
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这样新的试探点 就不用重新计算只要取 于是

每次迭代中(除第一次)只需取一个试探点.

类似的,如考虑 的情形 新的试探点 =

它也不需重新计算
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n 0.618法

一维搜索-->试探方法

这样,计算公式(2.5)(2.6)可写为
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    由于每次函数计算后极小区间的缩短率为 故若

初始区间为 则最终区间长度为 因此

可知 法是线性收敛的。

法也叫黄金分割法因为缩短率 叫黄金分割

数 它满足比率 即 。
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n 0.618法

一维搜索-->试探方法

  几何意义:黄金分割率对应的点在单位长区间[0,1]中
的位置相当于其对称点1-在区间[0,]中的位置

ak+l bk+lk+l k+l

k+l k+l bk+lak+l

ak b
k

k k
Step 2

Step 3



n 0.618法

一维搜索-->试探方法

算法(0.618法)

1 1

1 1

1 1 1 1
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n 0.618法

一维搜索-->试探方法
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n Fibonacci法

一维搜索-->方法

    Fibonacci法是与0.618法类似的一种方法。
   它与0.618法的主要区别之一在于：搜索区间长度   
的缩短率不是采用黄金分割数，而是采用
   Fibonacci数：
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Fibonacci法中计算公式为：
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n Fibonacci法

一维搜索-->方法

显然, 这里Fn-k /Fn-k+1相当于0.618法(1.5)-(1.6)中的,
每次的缩短率满足
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这里 时计算函数值的次数即要求经过 次计算函数

值后 最后区间的长度不超过 即

由于
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一维搜索-->方法
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故

给出最终区间长度得的上界 由 求出 数

再跟据 确定出 从而搜索一直进行到第 个搜索点

为止. 注意到

从而



n Fibonacci法

一维搜索-->方法

上式表明当n 趋于无穷时, Fibonacci法与0.618法的区间缩短
率相同, 因而也是以收敛比r线性收敛。

可以证明Fibonacci法是分割方法求一维极小化问题的最优
策略, 而0.618法是近似最优的。



n Fibonacci法

一维搜索-->方法
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给定初始区间 和最终区间长度 求计算

函数值的次数 使得

置辨别常数 计算试探点 和 ：

＝
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一维搜索-->方法

计算函数值(1) , (1).置k=1
k k k k
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F

k n

    



 

  

 
  



  

  

 

＋

k+1

＋

令 计算试探点

若 转 否则 计算 转 .



n Fibonacci法

一维搜索-->方法

Step 5, 置k:=k+1,转2.
n-1 n 1

n n 1

n-1 n

6, , . ( ), ( ).
( ) ( ), , ;
( ) ( ), , .

, [ , ].

n n n n

n n n n

n n n n

n n

Step
a b b
a a b

a b

        

    

    





  

 

  

令 计算

若 > 则令

若 则令

停止计算 极小点含于



n 进退法

一维搜索-->方法



n 进退法

一维搜索-->方法

输出[a,b]



n 牛顿法

一维搜索-->函数逼近法

考虑问题   min  f(x), xR                       (3.1)

( ) ( ) ( ) ( ) ( ) 21( ) ( ) ( )( ) ( )( )
2

k k k k kx f x f x x x f x x x     
令

( ) ( ) ( )( ) ( ) ( )( )k k kx f x f x x x    
又令

得到(x)的驻点，记做x(k＋1)，则
( )

( 1) ( )
( )

( )             (3.2)
( )

k
k k

k

f xx x
f x

 
 





n 牛顿法

一维搜索-->函数逼近法

    在点x(k)附近，f(x)(x)，因此可用(x)的极小点作
为目标函数f(x)的极小点的估计。

    如果x(k)是f(x)的极小点,则利用(3.2)可以得到极小点
的一个进一步的估计.于是得到一个序列{x(k)}.

(1) ( )

3.1 ( )
           ( ) 0, ( ) 0

, { }
2 .

k

Th f x x
f x f x
x x x

x

  
设 存在连续三阶导数, 满足

初始点 充分接近 则牛顿法产生的序列

至少以 阶收敛速率收敛于



n 牛顿法

一维搜索-->函数逼近法

( )                ( ) -          (3.3)
( )

{ }, ( )

f xA x x
f x

x x x x

A










  



证明:牛顿法可定义为算法映射

设解集合 ＝ 定义函数

下证 是关于解集合 和算法 的下降函数



n 牛顿法

一维搜索-->函数逼近法

( ) ( ) ( )

( )
( 1) ( ) ( )

( )

( ) ( ) ( ) ( )
( )

( ) ( ) ( )
( )

( ). ( ) 0,

( )( )
( )

1               ( ) ( ) ( )
( )

1               ( ) [ ( ) ( ) ( )]
( )

        

k k k

k
k k k

k

k k k k
k

k k k
k

x x x A x f x

f xx x x x x
f x

x f x f x xf x
f x

f x f x x x f x
f x

 

  






   


     


设 ， 由 有

＝ - ＝ -

-

( ) 2
( )

( )

1 1       ( ) ( )               (3.4)
2( )

                                  

k
k

k

x x f
f x

x x





 


其中 在 与 之间。



n 牛顿法

一维搜索-->函数逼近法

( )

( )
1 2

1 2

( 1) ( ) 22

1
(1)

( ) ( )  ( ) 0 ,
, 0

        ( ) , ( )                                 (3.5)

(3.4) ( ) .         (3.6)
2

,

k

k

k k

f x f x f x x x
k k x x x

f x k f x k
kx x x x
k

x x

   



  

  ＋

由于 和 连续， ，故当 接近 时 必存在

使得在包含 和 的闭区间上的每一点 处有

代入 ，则 

取初始点 充分接近 使

(1)2

1

                1
2
k x x
k

 

得

( ) (1)

( 1) ( )

{ } { }

                             (3.7)     

k

k k

x X x x x x x

x x x x

    

  

由此推得    

且   



n 牛顿法

一维搜索-->函数逼近法

( )

, , ,
( ) 8.2.1,{ } . (3.6) 2.k

A X
A x X Th x x

 由此知 是关于解集合 和算法 的下降函数 且 为紧集

在 上连续.根据 收敛于 由 知收敛阶为

(0)

( ) ( )

( 1)

( )
( 1) ( )

( )

S 1, , 0, 0;

S 2, ( ) ,

S 3,

( )           1. 2
( )

k k

k

k
k k

k

tep x k

tep f x x

tep x

f xx x k k
f x





 

 


  



＋

＋

给定初始点 允许误差 置

若 停止，得 。

计算点 ：

－ 置 转

算法(牛顿法)



n 割线法

一维搜索-->函数逼近法

基本思想：用割线逼近目标
函数的导函数的曲线y=f ’(x)
把割线的零点作为目标函数
的驻点的估计。

( ) ( 1) ( ) ( 1)

( ) ( 1)
( ) ( )

(

( ) ( 1)
( 1) (

) ( 1)

( )

) ( )
( ) ( 1)

( ) ( )

( ) ( )( ) ( ) ( ) 0

                 (3.8)

(3.8) { }.

( )
( ) ( )

k k k k

k k
k k

k k

k

k k
k k k

k k
x xx x

x x f x f x

f x f xx f x x x
x x

f x
x f x

x

f





 

 
   




  

 

－ －

－

－

－

－

设在点 和 处的导数分别为 和 。令

-

用公式 进行迭代，得到序列

-

( 1)kx ＋

( )kx( 1)kx -



n 割线法

一维搜索-->函数逼近法

(1) (2) ( )

3.2 ( )
           ( ) 0, ( ) 0

, { } .
1.618.

k

Th f x x
f x f x

x x x x x

  
  设 存在连续三阶导数, 满足

若 和 充分接近 则割线法产生的序列 收敛于

收敛阶为

(1) (2)

( ) ( 1)

( ) ( 1)
( ) ( )

( ) ( 1)

{ }

, ( ) 0, , .

,

( ) ( )( ) ( ) ( ) (3.9)

k k

k k
k k

k k

x x x x

x f x x x

x x

f x f xx f x x x
x x







  

  



 
  



－

－

证明：设 ＝ 是包含 的某个充分小的闭区间，

使得对每一个 有 取

以 为节点构造插值多项式

-
       

在一定的条件下，这个序列收敛于解：



n 割线法

一维搜索-->函数逼近法

( ) ( 1)1

1

( )( ) ( ) ( )( )       (3.10)
2

k kff x x x x x x






    



－

插值余项

其中 。

1
1

( ) ( 1)
1

(k)

( ) 0, (3.10)
( )          ( )                   (3.11)
2

           ,       

, (3.8) ( ) 0, (3.9)

k k

k k
k k

f x
fx e e

e x x e x x

x














   



－

由于 ＝ 因此由 得到

－

另一方面由 知 由 知



n 割线法

一维搜索-->函数逼近法

由(3.11)和(3.12)得到

( ) ( 1)

( ) ( 1)

( 1) ( 1)
2

( ) ( 1)
( 1) ( 1)

3( ) ( 1)

3 1

( ) ( )        ( )

( ) ( ) ( ) ( )(

( ) ( )           ( ( )(

( ) ,                             

k k

k k

k k

k k
k k

k k

k

f x f xx
x x

x x x x x

f x f x x x f x x
x x

f e



    









 
 


    

 
  




－

－

+

－
+ +

－

-

) 

-
)= )

      =-

( 1) ( ) ( 1)
1 3 3

         (3.12)

, , ( ) 0.k k k
ke x x x x f    + －其中 在 和 之间

1
1 1

3

( )         (3.13)
2 ( )k k k
fe e e
f

 








n  割线法

一维搜索-->函数逼近法

上式两端取绝对值，则

1
1 1

3

1 1

1

( )
                   (3.14)

2 ( )

max ( )
      M=

2min ( )

M             (3.15)

.   1        (3.16)
M

k k k

x

x

k k k

k

f
e e e

f

f x

f x

e e e

M
e





 

 





 














 

 

令

则       

取充分小的 使得    

则    
( ) ( 1) ( 1) (1) (2)

( ) ( )

, , ,

, k, (3.15) { } .

k k k

k k

x x x x x

x x x

   

   

于是, 进而由

由 收敛于



n  割线法

一维搜索-->函数逼近法

下面考虑收敛速率，考虑k取充分大的情形. 根据(3.14)

1 1

1 1
2

1 2

                  (3.17)

( )
      M=

2 ( )

/M               (3.18)

 (3.17).

1 0

1 5 1 51.618, 0.618
2 2

k

k k k

y
k

k k k

e M e e

f x
f x

e a

y y y

 

 








 

  

 
    

 

 

其中

令     

代入 于是可考虑差分方程

       

它的特征方程是

其两个根是



n  割线法

一维搜索-->函数逼近法

1 1 2 2 1 1

1
1 1

1

1

1

11

1 1 ( 1)    (3.19)

1         ( 1)        (3.20)

 
( 1)    

k k k

k

c c c
k

c
k

k

k

e a a k
M M

e a k
M

e
M k

e

  














 



 

于是 远大于

远大于

远大于

  注意：割线法与牛顿法相比，收敛速率较慢，但不需要计算
二阶导数。它的缺点与牛顿法有类似之处，都不具有全局
收敛性，如果初始点选择得不好，可能不收敛。



n  抛物线法

一维搜索-->函数逼近法

• 基本思想：在极小点附近用二次三项式x逼近目标函数f(x), 令
x与f(x)在三点x (1) <x(2) <x(3)处有相同的函数值，并假设 

                 f(x (1) ) >f (x(2)) , f (x(2)) < f (x(3) )
• 令          x=a+bx+cx2                                                           (9.3.21)
• 又令      x(1)  = a +bx(1) +c(x (1) )2 = fx (1)       (9.3.22)     
                   x(2)  = a +bx(2) +c(x (2) )2 = f(x(2) )           (9.3.23)
                   x(3)  = a +bx(3) +c(x (3) )2= f ( (3))         (9.3.24)
    解方程组(9.3.22-24),求二次逼近函数x 的系数a，b，c
    为书写方便，记



n   抛物线法

一维搜索-->函数逼近法

(2) 2 (3) 2 (1) (3) 2 (1) 2 (2)
1 2

(1) 2 (2) 2 (3) (2) (3) (1)
3 1

(3) (2) (2) (1) (2) (3)
2 3

(1) (2) (2) (3) (3) (1)

1 2 3

(( ) ( ) ) ( ), (( ) ( ) ) ( )

(( ) ( ) ) ( ), ( ) ( ),

( ) ( ), ( ) ( );

( )( )( )

,   

B x x f x B x x f x

B x x f x C x x f x

C x x f x C x x f x

D x x x x x x
B B Bb

D

   

   

   

   
 

 则

1 2 3

                   (3.25)

                               (3.26)

(x) (x) 2 0

                                (3.27)
2

C C Cc
D

b cx
bx
c

 

 


  

 

为求 的极小点,令 =

解得  



n   抛物线法

一维搜索-->函数逼近法

( )

( )

(1) (2) (3) ( )

( 1)

( )

( ) 1 2 3

1 2 3

(x) .

            (3.28)

( ) .

, , , ,

, , .

, { },

2( )

k

k

k

k

k

k

x

x f x

x

B B Bx
C C C

x x x

x

x





 


 

把 的驻点记做 则  

              

这样把 作为 的极小点的一个估计

再从 中选择目标函数值最小的点及其左右两点

给予相应的上标 代入公式 求出极小点的新的估计值

以此类推 产

在一定条件下,这个点列

生点列

收敛于问题 1.3的解,其收敛级为 .



n   三次插值法

一维搜索-->函数逼近法

(1) (2) (1) (2)

(1) (2) (1) (2)

(1) (2)

, ( ),
( ) 0, ( ) 0. , ) .

( ),
( ) ,

( ) ( ). ( ) ( )

x x x x
f x f x x x

x
f x x x

x f x x f x



 



  

    基本思想:首先选取两个点 使得

于是区间( 内存在极小点

利用在这两点的函数值和导数构造一个三次多项式

使它与 在 和 有相同的函数值和相同的导数 用

逼近 进而用 的极小点估计 的极小点.



n   三次插值法

一维搜索-->函数逼近法

令
(1) 3 (1) 2 (1)

(1) (1) (1) (1)

(2) (2) (2) (2)

( ) ( ) ( ) ( )            (3.29)

( ) ( ),        (3.30);     ( ) ( ),         (3.31)

( ) ( ),       (3.32);    ( ) ( ),           (3.33)

x a x x b x x c x x d

x f x x f x

x f x x f x



 

 

      

  

 

将(3.30)-(33)依次代入(3.29)得
(1)

(1)

(2) (1) 3 (2) (1) 2 (2) (1) (2)

(2) (1) 2 (2) (1) (2)

( )

( )

( ) ( ) ( ) ( )

3 ( ) 2 ( ) ( )

d f x

c f x

a x x b x x c x x d f x

a x x b x x c f x

 





      
     

(3.34)



n   三次插值法

一维搜索-->函数逼近法

    我们目的是求(x)的极小点,期望用它来逼近极小点,或
者基于此再确定新的迭代.为此,求出满足极值条件的点,即
满足’(x)=0, ’’(x)>0 的点.

(1) 2 (1)

(1)

(1) 2 (1)

(1)

( ) 3 ( ) 2 ( )                (3.35)

( ) 6 ( ) 2 ,                                    (3.36) 
   ( ) 0

               ( ) 2 ( ) 0,        (3.37)

(1) 0 )

x a x x b x x c

x a x x b
x

a x x b x x c

a x x






     

   
  

    

    

令

解此方程

2
(1)

,                                (3.38) 
2

3(2) 0    )        (3.33)
3

c
b

b b aca x x
a

  
    



n   三次插值法

一维搜索-->函数逼近法

2
(1)

2

2

2

, ( ) 2 0( 3.24) )
( )

, (3.36)

3( ) 6 ( ) 2 6 2
3

2 3
( ) 0

3 c     (3.40)
3 3

x b
x x

b b acx a x x b a b
a

b ac
x

b b acx
a b b ac








  

       

  
 

   
  

 

第一种情形 有 由假设及( 可得

故 是 的极小点.

第二种情形 将方程的根代入

要使

应取 



n   三次插值法

一维搜索-->函数逼近法

注意到当a=0时,b>0,故当a=0时由(3.40)得
(1)

2
cx x
b

  

这个结果恰好是(3.38).这表明(3.40)是在a=0和a0
两种情形下极小点的统一表达式.

这样可以解方程组来求出系数a,b,c再代入(3.40),
从而可得(x)的极小点x*.

(1) (1) (2) (2)( ), ( ), ( ) ( ) ( )
.

f x f x f x f x x
x

 下面给出用 和 表示的

的极小点 的表达式



n   三次插值法

一维搜索-->函数逼近法

记 (2) (1)

(2) (1)

(1) (2)

2 2 (1) (2)

(2)
(1) (2) (1)

(2) (1)

3[ ( ) ( )]          (3.41)

, ( ) ( )        (3.42)  

( ) ( ),       (3.43)

( )( )(1 )        (3.44)
( ) ( ) 2

f x f xs
x x

z s f x f x

w z f x f x

f x w zx x x x
f x f x w





   

  

  
    

  



n   三次插值法

一维搜索-->函数逼近法

(2) (1)

(1) (2)

(1) (2)

(3.44) ( ) ( ) 2 0

( , ( ) 0, ( ) 0, (3.43) , 0)
 (3.41)- 43) , ,  (3.44) .

( ) ( )

,  

f x f x w

f x f x w w
w z x

f x x f x

x x x

   

   



式 中必有

事实上 由 确定 取算术根,故

于是利用公式 ( 求出 再由 求得极小点

若 充分小, 就可作为 的可接受的极小点,否则,

可从 和 中确定两个插值点,再利用上述公式进行计算.



n   三次插值法

一维搜索-->函数逼近法

算法(两点三次插值法)
(1) (2) (1) (1) (2) (2)

(2) (1) (1) (2)

(2) (1)

1: , , ( ), ( ), ( ), ( ),

, ( ) 0, ( ) 0, .
2 : (3.41) (3.44) , , ,

3 : , , . 4          

4 : ( ), ( ) . ( )

Step x x f x f x f x f x

x x f x f x
Step s z w x

Step x x x

Step f x f x f x





 

   



  

  

给定初点 计算

要求满足 给定允许误差

按公式 式计算

若 停止 得点 否则转

计算 若

(1) (1) (1)

(2) (2) (2)

0 , .

( ) 0, , ( ) ( ), ( ) ( ). 2

( ) 0, , ( ) ( ), ( ) ( ). 2.

x

f x x x f x f x f x f x

f x x x f x f x f x f x

     

     

停止 得点

若 令 转

若 令 转



最优性条件

LP

n 第六次作业
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最优性条件

LP

n 小结

Ø 一维搜索的基本概念

Ø 试探法

Ø 函数逼近法


