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10      PART TEN 使用导数的最优化方法
Optimization Method 

Using Derivative

一维搜索



问题导入

n 主要内容

• 最速下降法

• 牛顿法

• 共轭梯度法

• 拟牛顿法

• 信赖域法



最速下降法

n 概念 

考虑无约束问题       
                 min f(x), x Rn           (10.1.1)
其中 f(x)具有一阶连续偏导数。

在处理这类问题时，一般迭代策略是，希望从某一点出发，
选择一个目标函数值下降最快的方向，沿此方向搜索以期尽
快达到极小点，基于这一思想，Cauchy于1847年提出了最速
下降法。这是无约束最优化中最简单的方法。



最速下降法

n 概念 
函数f(x)在点x处沿方向d的变化率可用方向导数表示

当函数可微时，有方向导数

( , ) ( )     (1.2)TDf x d f x d 

求函数f(x)在点x处下降最快的方向,归结为求

min    ( )
.    1         (1.3)

Tf x d
s t d





( ) ( ) ( )  

  ( ) ( )          (1.4)

T

T

f x d f x d f x

f x d f x

    

    

,Schwartz由 不等式



最速下降法

n 概念 

由上式知.当
( )          (1.5)
( )

f xd
f x


 



时等号成立.故在点x处沿(1.5)所定义的方向变化率最小,
即负梯度方向为最速下降方向.

注意:在不同的尺度下最速下降方向是不同的.



最速下降法

n 概念 

最速下降算法的迭代公式为

( 1) ( ) ( )

( ) ( ) ( )

( ) ( )

                   (1.6)

, ( ).

k k k
k

k k k

k k

x x d

d x x
d f x

  

 

其中 是从 出发的搜索方向,此处取在点 的最速下降

方向即   

( ) ( )

( ) ( ) ( ) ( )

0
        ( ) ( )              (1.7)min

k k
k

k k k k
k

x d

f x d f x d




 


  

是从 出发沿方向 进行一维搜索的步长,即满足



最速下降法

n 算法 
算法描述

( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

0
( 1) ( ) ( )

1, , 0, 1
2, ( )

3, , , , , ,

, ( ) ( )min

4, , : 1, 2

k n

k k

k k k

k k k k
k k

k k k
k

Step x E k
Step d f x

Step d x d

f x d f x d

Step x x d k k Step






  






  

 



  

   

给定初始点 允许误差 置

计算搜索方向

若 停止 否则 从 出发 沿 进行一维搜索

     求 使得    

令 置 转



最速下降法

n 例子 
例1.1 用最速下降法求解下列问题

2 2
1 2

(1)

min        ( ) 2
1(1,1) ,

10
T

f x x x

x 

 

 初始点

第一次迭代

目标函数f(x)在点x处的梯度

1

2

4
( )

2
x

f x
x

 
   

 



最速下降法

n 例子 
令搜索方向

(1) (1) 4
( )

2

16 4 2 5 1/10

d f x

d

 
     

   

(1) (1), , ,x d 1从 出发 沿方向 进行一维搜索 求步长 即
(1) (1)

0

(1) (1)

2 2

min ( )= ( )

1 4 1 4
1 2 1 2

( ) 2(1 4 ) (1 2 )

f x d

x d


  


 



   




      
              
   



最速下降法

n 例子 
令

1

( ) 16(1 4 ) 4(1 2 ) 0
                   5 /18

   


      
 

(2) (1) (1)
1

1/9
4 /9

x x d
 

    
 

在直线上的极小点

第二次迭代

(2) (2)

(2)

4/9
( )

8/9
4 5 1/10
9

d f x

d

 
     

 

(2)( )f x x在点 处的最速下降方向为



最速下降法

n 例子 
(2) (2), :x d从 出发 沿方向 进行一维搜索

(2) (2)

0

(2) (2)

2 2

min ( )= ( )

1/ 9 4 / 9 ( 1 4 ) / 9
4 / 9 8 / 9 (4 8 ) / 9

2 16( ) ( 1 4 ) (1 2 )
81 81

f x d

x d


  


 



   




       
              

    

令

2

16 64( ) ( 1 4 ) (1 2 ) 0
81 81

                   5 /12

   



      

 



最速下降法

n 例子 

(3) (2) (2)
2

12
127

x x d
 

    
 

得到

第三次迭代

(3) (3)

(3)

24( )
127

4 5 1/10
27

d f x

d

 
     

 

(3)( )f x x在点 处的最速下降方向为



最速下降法

n 例子 
(3) (3), :x d从 出发 沿方向 进行一维搜索

(3) (3)

0

(3) (3)

2 2
2 2

min ( )= ( )

1 2 1 42 4 2
1 1 1 227 27 27

8 4( ) (1 4 ) (1 2 )
27 27

f x d

x d


  


 



   




      
              

   

令

2

( ) 0
 5 /18

 


 
 



最速下降法

n 例子 

此时

(4) (3) (3)
2

1/9 12 2
4/9 427 243

x x d
    

      
   

(4) 8 1( ) 5
243 10

f x  

已经满足精度要求,得近似解

12
4243

x
 

  
 



问题的最优解为x*=(0,0)



最速下降法

n 算法的收敛性 

  ( )

( )

1.1     ( )
( ) 0 , { }

ˆ{ } .

k

k

Theorem f x
x f x x

x x

  



设 是连续可微的实函数,解集合

= 最速下降法产生的序列 含于

某个紧集,则序列 的每个聚点

2

( ) ( )

2

1.2     ( ) ,
Hessian ( ) 0, ,

{ } , { ( )}

( ).

k k

Theorem f x x
f x a A

x x f x

A a f x
A a

 

 
  

设 存在连续二阶偏导, 是局部极小点

矩阵 的最小特征值 最大特征值为

算法产生的序列 收敛于 则目标函数序列

以不大于 的收敛比线性的收敛于



最速下降法

n 算法的收敛性  

2 21 1
1

A a r
A a r
            

在上述定理中,若令r=A/a,则

2 ( ) .r f x是对称正定矩阵 的条件数

 定理表明:

 条件数越小,收敛越快;条件数越大,收敛越慢.



最速下降法

n 性质1 

最速下降法存在锯齿现象

x

(2)x
(1)x



最速下降法

n 性质2 

  容易证明,用最速下降法极小化目标函数时,

  相邻两个搜索方向是正交的.

令

则
( ) ( ) T ( )

( 1) ( )

( 1) ( 1) ( ) ( )

( )= ( ) 0
( ) ( ) 0

( ) ( )

k k k
k

k T k

k k k k

f x d d
f x f x

d f x d f x

  


 

   

   

    与 正交

( ) ( )

( ) ( )

( ) ( )     
( )

k k

k k

f x d
d f x
   

 



牛顿法

n 概念 

( ) ( ) ( )

( ) 2 ( ) ( )

2 ( ) ( )

( ) ( )
( ) ( ) (

1 ( ( )(
2

( ) ( ) Hessian

k k T k

k T k k

k k

f x x
f x f x x x

x x f x x x

f x f x x



 

  



   

       = )+

        ) )

其中 是 在点 处的 矩阵.

( )

( )

( ) , . ( )
, ( ) Taylor ,

n k

k

f x x R x f x
f x x

设 是二次可微函数 又设 是 的极小点的

一个估计 将 在 点 展开 取二阶近似:



牛顿法

n 概念 

2 ( )

( 1) ( ) 2 ( ) 1 ( )

( )
( ) ( ) 10 2 2

k

k k k k

f x
x x f x f x 



 

 设 可逆,则得牛顿法的迭代公式

       =    ( . . )

即
( ) 2 ( ) ( )( ) ( )( ) = 0 10 21k k kf x f x x x     ( . .)

(0)

( ) ( )

( 1) ( ) 2 ( ) 1 ( )

Newton )
1, , 0, 1;

2, ( ) , , ; ,

( ) ( ) , : 1, 2

k k

k k k k

Step x k

Step f x x

x x f x f x k k




 

 

 

    

算法( 法

给定初始点 允许误差 置

若 停止 得解 否则 令

  转

 (x)=0为求 (x)的驻点,令



牛顿法

n 算法的收敛性  
 注意:牛顿法的迭代格式也可以从最速下降方向的角度来理解.

min    ( )
.    1          (10.2.3)





T

T

f x d
s t d Ad

下求A度量下的最速下降方向,为此,考虑

         T
A

d d Ad

下面介绍一下A度量及其意义下的最速下降方向.
设A为对称正定矩阵,向量d的A范数定义为



牛顿法

n 算法的收敛性  
由A, A-1对称正定,故存在对称平方根A1/2 , A-1/2,使得

1 1 1 1
12 2 2 2,       A A A A A A

 
 －

于是
1 1 1 1
2 2 2 2

1 1
2 2

1 1
2 2

( )

( ) ( )

              ( ( ))

T T T

T T

T

d Ad d A A d A d A d

f x d f x A A d

A f x A d





 

  

 



牛顿法

n 算法的收敛性  
1
2 , (10.2.3)y A d令 则 可写成

1
2min    ( ( ))

.    1           (10.2.4)






T

T

A f x y
s t y y

去掉绝对值符号,有 1 1
2 2 ( ( )) ( )TA f x y A f x

 
   

1 1 1
2 2 2 ( ( )) ( ) ( )TA f x y A f x y A f x

  
    

根据Schwartz不等式,得到



牛顿法

n 算法的收敛性  
即 1 1 1

2 2 2 ( ) ( )Tf x A A d A f x
 

   

1
2( ) ( )              Tf x d A f x


   

为得到在点x处下降最快的方向,按下式选取d
1

1
1 2

( )        (10.2.5)
( ( ) ( ))





 


 T

A f xd
f x A f x

这时上式等号成立,由此确定的方向即度量A意义
下的最速下降方向



牛顿法

n 算法的收敛性  

若取

2 ( )k
kA G f x  

|| || , ( ) .
k k

k
G G

f x 的最速下降方向其步长为

则牛顿法的搜索方向实际上是关于向量椭球范数



牛顿法

n 例子 
例 用牛顿法求解下列问题

4 2
1 2

(1)

      min   ( 1)

(0,1)

x x

x

 

取初点

3 2
21 1

2

0  4( 1) 12( 1)
( ) , ( )  

22 0
x x

f x f x
x

    
      

  

第1次迭代

(1) 2 (1) -4 12 0 
( ) , ( )  

2 0 2
f x f x

   
      

   



牛顿法

n 例子 
(2) (1) 2 (1) 1 (1)

1

( ) ( )

0 12 0  -4 1/3
       

1 0 2 2 0

x x f x f x



  

       
         
       

(3) (2) 2 (2) 1 (2)

1

( ) ( )

1/3 48/9 0  32 / 27 5/9
       

0 0 2 0 0

x x f x f x



  

       
         
       

第2次迭代

(2) 2 (2) 32 / 27 48/9 0 
( ) , ( )  

0 0 2
f x f x

   
      

   



牛顿法

n 例子 

(4) (3) 2 (3) 1 (4)

1

( ) ( )

5/9 64/27 0  256 / 729 19/ 27
       

0 0 2 0 0

x x f x f x



  

       
         
       

第3次迭代

(3) 2 (2) 256 / 729 64/27 0 
( ) , ( )  

0 0 2
f x f x

   
      

   

继续下去,第4次迭代,…得到点列收敛于(1,0),此为
最优解.



牛顿法

n 局部收敛性 

 

2 ( ) 1 (1)

1 2 1 2

(1)

2 ( ) 1
1

2

  ( ) , . ( ) 0,
( ) , ,

, , ,

(1) ( ) ,                              

10.2

               

( ) ( )

.

( )(
)

1

(2

n

k

k

f x x E x f x
f x x x

k k k k

x X x x x x x

f x k

f x f x f x x x





  



    

 

   

设 是二次可微函数 满足

且 存在 又设初始点 充分接近 使得存

在 >0 满足 <1 且对每一个

定理

成立:

2

)
          

.

k
x x

x




则牛顿法产生的序列收敛于



牛顿法

证明:根据(10.2.2)，牛顿算法映射定义为

2 1( ) ( ) ( ) (a)A x x f x f x         

{ }, ( ) -x x x x 定义解集合 令函数 =

下证(x) 是关于解集合和算法A的下降函数.

2 1

2 1

2 1 2

A ( ) 0 ,
( ) ( )

( ) ( ) [ ( ) ( )]
( ) [ ( ) ( ) ( )( )]      (b)

f x
y x x f x f x x

x x f x f x x
f f x x f x f x x x







 

    

    

     

根据算法 的定义及 的假设 有

, , ( ).x X x x y A x  令 且 又令



牛顿法

于是可得
2 1 2

1 2

( ) ( ) ( ) ( )( )

                               (c)

y x f x x f x f x x x

k k x x x x

      

   

( )

( )

( ) , , { } .
, ,

, { } .

k

k

c y X x X
X

A X
x x

 由 可知 故迭代产生的序列 根据

定义知 是紧集 故迭代产生的序列含于紧集.此外

算法映射 在紧集 上是闭的.

综上 迭代产生的序列 必收敛于

从而(x) 是关于解集合和算法A的下降函数



牛顿法

n 局部收敛性
2

2

0 2

( ) ( ), *
( *) 0,Hesse ( *)

*, Hesse ( ) ( )
Lipschitz , 0, , ,

( ) ( ) ,

k, 10 2 2 , { }
*.

n

n

k

f C R x
f x f x

x x G x f x
L x y R

G x G y L x y

x
x



  

 

  

  



局部收敛定理 设函数 它在 的

梯度 矩阵 正定.若初始点

充分靠近 并且 矩阵 满足

条件 即存在 使得 有

       

则对 迭代格式( . . )有意义 且迭代点序列

以二阶的收敛速度收敛到

定理



牛顿法

n 局部收敛性

当牛顿法收敛时,有下列关系
2( 1) ( )                  k kx x c x x   

c , 2 是某个常数 因此算法至少是 阶收敛的.

特别的,对于二次凸函数,用牛顿法求解,经一次迭代即达到
极小点.设有二次凸函数

其中A是对称正定矩阵

1( )
2

T Tf x x Ax b x c  



牛顿法

• 注意,当初始点远离极小点时,牛顿法可能不收敛

•阻尼牛顿法

基本思想:增加了沿牛顿方向的一维搜索.

迭代公式为
( 1) ( ) ( )   k k k

kx x d =

( ) 2 ( ) 1 ( )( ) ( ) ,
,

k k kd f x f x    k其中 为牛顿方向 是由

一维搜索所得的步长即满足
( ) ( ) ( ) ( )( min ( )    k k k k

kf x d f x d


  )=



牛顿法

• 算法(阻尼牛顿法)
(0)

( ) 2 ( ) 1

( ) ( )

( ) 2 ( ) 1 ( )

( ) ( )

( ) ( ) ( ) ( )

1, , 0, 1;
2, ( ), ( )

3, ( ) , , ; ,

               ( ) ( )
4, , :

      min ( ) ( )   

k k

k k

k k k

k k

k k k k
k

Step x k
Step f x f x

Step f x x

d f x f x
Step x d

f x d f x d






 





 

 

 

  

  

给定初始点 允许误差 置

计算

若 停止 得解 否则 令

 

从 出发 沿方向 作一维搜索

 ( 1) ( ) ( )    
5, : 1, 2

k k k
kx x d

Step k k
  

 

令

置 转



牛顿法

n 存在问题

显然可能存在：

1) Hessian 矩阵 2f (x(1))奇异-不可逆
2) 即使非奇异，Hessian 矩阵 2f (x(1))也可能非正定

牛顿方向不一定是下降方向，算法失效！



牛顿法

n 例子 
•例 用阻尼牛顿法求解下列问题

4 2
1 1 2 2min ( ) (1 )f x x x x x   

(1)

(1) 2 (1)

(0,0) . Hessian
0 0 1

( ) , ( )
2 1 2

Tx

f x f x



   
      

   

取初点 在该点函数的梯度和 阵为

牛顿方向
(1) 2 (1) 1 (1)

1

( ) ( )

0 1 0 2
1 2 2 0

d f x f x



  

     
      
     



牛顿法

n 例子 
(1) (1), ,x d从 出发 沿方向 进行一维搜索 令

(1) (1) 4)=16 +1f x d   ( )= (

= 0 = 0    1( )

显然,用阻尼牛顿法不能产生新点, 而点x(1) =(0,0) T并不是问题
极小点.可见从x(1)出发,用阻尼牛顿法求不出问题的极小点, 原
因在于 Hessian 矩阵 2f (x(1))非正定

再令



牛顿法

n 修正牛顿法 
考虑 (10.2.2),记搜索方向d(k) = x- x(k) 

( ) 2 ( ) 1 ( )( ) ( )  (e)k k kd f x f x  

阻尼牛顿法所用搜索方向是上述方程的解

2 ( ) ( ) ( )( ) ( )   (d)k k kf x d f x  

此处假设逆矩阵                    存在2 ( ) 1( )kf x 



牛顿法

n 修正牛顿法 
2 ( )( )kHessian f x解决 矩阵 非正定问题的基本思想

2 ( )

2 ( )

( ) ( )

( ), , ( )

( ) :

      ( )              (f)

k
k

k
k

k k
k

f x G d

G f x

G d f x





 

修正 构造一个对称正定矩阵 在方程

中用 取代矩阵

( ) 1 ( )( )          (g)k k
kd G f x   

再沿此方向作一维搜索

2 ( )

k

? ,
( )           (h)

I , .

k
k

k k

G
G f x I


  

如何构造 比如 可令

其中 是单位阵 是一个适当的正数



牛顿法

n 修正牛顿法 
(0)

( ) ( ) ( )

2 ( )

( ) 1 ( )

( ) ( )

1, , 0, 0;

2, ( ), ( ) , , ;

Step3 
3,  Hesse ( ), ,

, 0),
( ) ( )

4, ,

k k k k

k
k k k k

k k
k k

k
k k

Step x k

Step g f x f x x

Step G f x B G E
E G

d B f x
Step x d







 

  

   

  

给定初始点 允许误差 置

计算梯度 = 若 停止 得解

否则转

计算 矩阵 置矩阵 其

中 为修正矩阵(当 正定时 它取 计算修正牛顿方向

 

从 出发 沿方向 作(精确或
( ) ( ) ( ) ( )

( 1) ( ) ( )

:
      min ( ) ( )   

    , : 1, 2

k k k k
k

k k k
k

f x d f x d

x x d k k


 



  

   

非精确)一维搜索

 令 置 转



牛顿法

n 修正牛顿法 

0

0

0
( )

 : R D
,  D

{ | ( ) ( )

, lim ( ) 0

( ) 

.

n

f x

k

x

f R
x f

S x D f x f x

f x






  

 

设 在某开集 上二阶

连续可微 且修正牛顿法的初始点 使得 的水平集

是紧集.若矩阵序列满足

有

定理 全局收

界分解特性

定理

则

敛



最优性条件

LP

n 小结

Ø 使用导数基本概念

Ø 最速下降法

Ø 牛顿法



小结和作业

Summary&Homework

n 作业

Ø 习题 3、4、5、10、14、17、18、19


